

    
      
          
            
  [image: _images/Logo.png]
pyAudioDspTools is a python 3 package for manipulating audio by just using numpy. This can be from a .wav or as a stream
via pyAudio for example. pyAudioDspTool’s only requirement is Numpy. The package is only a few kilobytes in size and
well documented.

You can use pyAudioDspTools to start learning about audio dsp because all relevant operations are in plain sight,
no C or C++ code will be called and nearly no blackboxing takes place. You can also easily modify all available audio
effects and start writing your own, you only need to know python and numpy as well as audio dsp basics. As this package
is released under the MIT licence, you can use it as you see fit.


Quickstart




To install pyAudioDspTools simply open a terminal in your venv and use pip:

pip install pyAudioDspTools





The package is only a few kB in size, so it should download in an instant. After installing the package you can import it to your module in Python via:

import pyAudioDspTools





pyAudioDspTools is device centered. Every sound effect processor is a class, imagine it being like an audio-device. You first create a class/device with certain settings and then run some numpy-arrays (which is your audio data) through them. This always follows a few simple steps, depending on if you want to modify data from a .wav file or realtime-stream. All classes are ready for realtime streaming and manage all relevant variables themselves.

image of pipeline here






Using pyAudioDspTools

Below you will find 2 simple examples of processing you data.Example 1 will read a .wav
file, process the data and write it to a second .wav file. Example 2 will create a stream via the
pyAudio package and process everything in realtime


Processing from a .wav file.

import pyAudioDspTools

# Importing a mono .wav file and then splitting the resulting numpy-array in smaller chunks.
full_data = pyAudioDspTools.MonoWavToNumpyFloat("some_path/your_audiofile.wav")
split_data = pyAudioDspTools.MakeChunks(full_data)

# Creating the class/device, which is a lowcut filter
filter_device = pyAudioDspTools.CreateLowCutFilter(800)

# Setting a counter and process the chunks via filter_device.apply
counter = 0
for counter in range(len(split_data)):
    split_data[counter] = filter_device.apply(split_data[counter])
    counter += 1

# Merging the numpy-array back into a single big one and write it to a .wav file.
merged_data = pyAudioDspTools.CombineChunks(split_data)
pyAudioDspTools.NumpyFloatToWav("some_path/output_audiofile.wav", merged_data)








Processing a live feed with pyaudio

# Example 2: Creating a live audio stream and processing it by running the data though a lowcut filter.
# Is MONO.
# Has to be manually terminated in the IDE.

import pyaudio
import pyAudioDspTools
import time
import numpy
import sys

pyAudioDspTools.sampling_rate = 44100
pyAudioDspTools.chunk_size = 512

filterdevice = pyAudioDspTools.CreateLowCutFilter(300)


# Instantiate PyAudio
pyaudioinstance = pyaudio.PyAudio()

# The callback function first reads the current input and converts it to a numpy array, filters it and returns it.
def callback(in_data, frame_count, time_info, status):
   in_data = numpy.frombuffer(in_data, dtype=numpy.float32)
   in_data = filterdevice.apply(in_data)
   #print(numpydata)
   return (in_data, pyaudio.paContinue)


# The stream class of pyaudio. Setting all the variables, pretty self explanatory.
stream = pyaudioinstance.open(format=pyaudio.paFloat32,
               channels=1,
               rate=pyAudioDspTools.sampling_rate,
               input = True,
               output = True,
               frames_per_buffer = pyAudioDspTools.chunk_size,
               stream_callback = callback)

# start the stream
stream.start_stream()

# wait
while stream.is_active():
   time.sleep(5)
   print("Cpu load:", stream.get_cpu_load())

# stop stream
stream.stop_stream()
stream.close()

# close PyAudio
pyaudioinstance.terminate()
sys.exit()












Submodules


	
class pyAudioDspTools.EffectCompressor.CreateCompressor(threshold_in_db=- 15, ratio=0.6, attack_in_ms=3.1, release_in_ms=30.1)

	Bases: object

Creating a compressor audio-effect class/device

Can be used to limit dynamic range of a signal. Very effective on drums for example.
Is overloaded with basic settings.
This class introduces no latency.


	Parameters

	
	threshold_in_db (int or float) – Sets the threshold when the gate becomes active. Must be negative.


	ratio (float) – The depth of the effect. Must be a value between >0 and <1.0


	attack (float) – The attack-time of the gate in milliseconds


	release (float) – The release-time of the gate in milliseconds









	
apply(int_array_input)

	Applying the Gate to a numpy-array.


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectDelay.CreateDelay(time_in_ms=500, feedback_loops=2, lowcut_filter_frequency=40, highcut_filter_frequency=12000, use_lowcut_filter=False, use_highcut_filter=False, wet=False)

	Bases: object

Creating a Delay audio-effect class/device.

Is overloaded with basic settings.
This class introduces no latency


	Parameters

	
	time_in_ms (int or float) – Sets the delay-time in milliseconds.


	feedback_loops (int or float) – Sets the amount of repetitions of the delay.


	lowcut_filter_frequency (int or float) – The frequency of the audio filter, if use_lowcut_filter is set to True


	highcut_filter_frequency (int or float) – The frequency of the audio filter, if use_highcut_filter is set to True


	use_lowcut_filter (bool) – If use_lowcut_filter is set to True, it will apply a lowcut to the processed input array.


	use_highcut_filter (bool) – If use_highcut_filter is set to True, it will apply a highcut to the processed input array.


	wet (bool) – If set to True it will just return the delay and not mix it with the original signal.
Used for parallel processing.









	
apply(float32_array_input)

	Applying the 3 Band FFT EQ to a numpy-array.


	Parameters

	float32_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectEQ3Band.CreateEQ3Band(low_shelf_frequency, low_shelf_gain, mid_frequency, mid_gain, high_shelf_frequency, high_shelf_gain)

	Bases: object

Creating a 3Band FFT EQ audio-effect class/device.

Can be used to manipulate frequencies in your audio numpy-array.
Is based on Robert Bristow-Johnson’s Audio EQ Cookbook.
Is the slower one, the faster, FFT based one being CreateEQ3BandFFT.
Is NOT overloaded with basic settings.
This class introduces no latency.


	Parameters

	
	low_shelf_frequency (int or float) – Sets the frequency of the lowshelf-band in Hertz.


	low_shelf_gain (int or float) – Increase or decrease the lows in decibel.


	mid_frequency (int or float) – Sets the frequency of the mid-band in Hertz. Has a fixed Q.


	mid_gain (int or float) – Increase or decrease the selected mids in decibel.


	high_shelf_frequency (int or float) – Sets the frequency of the highshelf-band in Hertz.


	high_shelf_gain (int or float) – Increase or decrease the highs in decibel.









	
applyhighband(float_array_input)

	Applying the high-band to a numpy-array.


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float










	
applylowband(float_array_input)

	Applying the low-band to a numpy-array.


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float










	
applymidband(float_array_input)

	Applying the mid-band to a numpy-array.


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectEQ3BandFFT.CreateEQ3BandFFT(lowshelf_frequency, lowshelf_db, midband_frequency, midband_db, highshelf_frequency, highshelf_db)

	Bases: object

Creating a 3Band FFT EQ audio-effect class/device.

Can be used to manipulate frequencies in your audio numpy-array.
Is the faster one, the slower, non FFT based one being CreateEQ3Band.
Is NOT overloaded with basic settings.
This class introduces latency equal to config.chunk_size.


	Parameters

	
	lowshelf_frequency (int or float) – Sets the frequency of the lowshelf-band in Hertz.


	lowshelf_db (int or float) – Increase or decrease the lows in decibel.


	midband_frequency (int or float) – Sets the frequency of the mid-band in Hertz. Has a fixed Q.


	midband_db (int or float) – Increase or decrease the selected mids in decibel.


	highshelf_frequency (int or float) – Sets the frequency of the highshelf-band in Hertz.


	highshelf_db (int or float) – Increase or decrease the highs in decibel.









	
apply(float32_array_input)

	Applying the 3 Band FFT EQ to a numpy-array.


	Parameters

	float32_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectFFTFilter.CreateHighCutFilter(cutoff_frequency=8000)

	Bases: object

Creating a FFT filter audio-effect class/device.

Cuts the upper frequencies of a signal.
Is overloaded with basic settings.
This class introduces latency equal to chunk_size.


	Parameters

	cutoff_frequency (int or float) – Sets the rolloff frequency for the high cut filter.






	
apply(float32_array_input)

	Applying the filter to a numpy-array


	Parameters

	float32_array_input (float) – The array, which the effect should be applied on.



	Returns

	The previously processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectFFTFilter.CreateLowCutFilter(cutoff_frequency=160)

	Bases: object

Creating a FFT filter audio-effect class/device.

Cuts the lower frequencies of a signal.
Is overloaded with basic settings.
This class introduces latency equal to chunk_size.


	Parameters

	cutoff_frequency (int or float) – Sets the rolloff frequency for the high cut filter.






	
apply(float32_array_input)

	Applying the filter to a numpy-array


	Parameters

	float32_array_input (float) – The array, which the effect should be applied on.



	Returns

	The previously processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectGate.CreateGate(threshold_in_db=- 5, depth=0.1, attack=3.1, release=200.1)

	Bases: object

Creating a gate audio-effect class/device

Can be used to duck noise and bleed. Very effective on drums for example.
For cleaner effect use short attack time and moderate release time.
Is overloaded with basic settings.
This class introduces no latency.


	Parameters

	
	threshold_in_db (int or float) – Sets the threshold when the gate becomes active. Must be negative


	depth (float) – The depth of the effect. Must be a value between >0 and <1.0


	attack (float) – The attack-time of the gate in milliseconds


	release (float) – The release-time of the gate in milliseconds









	
apply(int_array_input)

	Applying the Gate to a numpy-array


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectHardDistortion.CreateHardDistortion

	Bases: object

Creating a distortion audio-effect class/device.

Its a wave-shaper and messes with dynamic range, but doesn’t introduce latency.


	Parameters

	None (None) – 






	
apply(float_array_input)

	Applying the distortion to a numpy-array.


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectSaturator.CreateSaturator(saturation_threshold_in_db=- 20.0, makeup_gain=2.0, mode='hard')

	Bases: object

Creating a saturator audio-effect class/device

Is a wave-shaper and messes with dynamic range, but doesn’t introduce latency.


	Parameters

	
	saturation_threshold_in_db (int or float) – Sets the threshold when the saturator becomes active. Must be negative.


	makeup_gain (float) – Makeup for Volume-loss due to wave-shaping in decibel.


	mode (string) – The mode of the Saturator. Can be ‘hard’ or ‘soft’









	
apply(float_array_input)

	Applying the Saturator to a numpy-array


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectSoftClipper.CreateSoftClipper(drive=0.44)

	Bases: object

Creating a limiter-kind audio-effect class/device

Its a wave-shaper and messes with dynamic range, but doesn’t introduce latency.


	Parameters

	drive (float) – A value between 0.0 and 1.0, 0.0 meaning no wave shaping at all and 1.0 full drive.





Notes


	You can go beyond 1.0, but I designed it to be at the sweet spot. Go to 70.0 if you want, but be warned.





	
apply(float_array_input)

	Applying the Soft Clipper to a numpy-array


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float














	
class pyAudioDspTools.EffectTremolo.CreateTremolo(tremolo_depth=0.4, lfo_in_hertz=4.5)

	Bases: object

Creating a tremolo audio-effect class/device

Creates a LFO and applies it to the input array to modulate power.


	Parameters

	
	tremolo_depth (float) – Sets the depth of the effect. Must be a value between >0 and <1.0


	lfo_in_hertz (float) – Sets the cycle of the LFO in seconds.









	
apply(float_array_input)

	Applying the Tremolo to a numpy-array.


	Parameters

	float_array_input (float) – The array, which the effect should be applied on.



	Returns

	The processed array, should be the exact same size as the input array



	Return type

	float










	
reset()

	Resets the LFO of the Tremolo.


	Parameters

	None (None) – 














	
pyAudioDspTools.Generators.CreateSinewave(sin_frequency, sin_length_in_samples, sin_sample_rate=44100)

	Generates a sine wave with selected properties.


	Parameters

	
	sin_frequency (int) – The frequency of the sine wave.


	sin_length_in_samples (int) – The lenght of the sine wave in samples. Is your sin_sample_rate is 44100 and your sin_length_in_samples is set to
44100 your sine wave signal will be exactly 1 second long for example


	sin_sample_rate (int) – Is set to sampling_rate from your config.py by default. Use pyAudioDspTools.sampling_rate=48000 in your script
to change your sampling rate globally to 48000 hertz for example.






	Returns

	The created array



	Return type

	numpy array










	
pyAudioDspTools.Generators.CreateSquarewave(square_frequency, square_length_in_samples, square_sample_rate=44100)

	Generates a square wave with selected properties.


	Parameters

	
	square_frequency (int) – The frequency of the sine wave.


	square_length_in_samples (int) – The lenght of the square wave in samples. Is your square_sample_rate is 44100 and your square_length_in_samples
is set to 44100 your square wave signal will be exactly 1 second long for example


	square_sample_rate (int) – Is set to sampling_rate from your config.py by default. Use pyAudioDspTools.sampling_rate=48000 in your script
to change your sampling rate globally to 48000 hertz for example.






	Returns

	The created array



	Return type

	numpy array










	
pyAudioDspTools.Generators.CreateWhitenoise(noise_length_in_samples, sample_rate=44100)

	Generates noise with selected properties.


	Parameters

	
	noise_length_in_samples (int) – The lenght of the sine wave in samples. Is your square_sample_rate is 44100 and your square_length_in_samples
is set to 44100 your noise signal will be exactly 1 second long for example


	square_sample_rate (int) – Is set to sampling_rate from your config.py by default. Use pyAudioDspTools.sampling_rate=48000 in your script
to change your sampling rate globally to 48000 hertz for example.






	Returns

	The created array



	Return type

	numpy array










	
pyAudioDspTools.Utility.CombineChunks(float_array_input)

	Converts a sliced array back into one long one. Use this if you want to write to .wav


	Parameters

	float_array_input (float) – The array, which you want to slice.



	Returns

	The sliced arrays.



	Return type

	numpy array










	
pyAudioDspTools.Utility.Convert16BitTodBV(int_array_input)

	




	
pyAudioDspTools.Utility.ConvertdBVTo16Bit(float_array_input)

	




	
pyAudioDspTools.Utility.Dither16BitTo8Bit(int_array_input)

	




	
pyAudioDspTools.Utility.Dither32BitIntTo16BitInt(int_array_input)

	




	
pyAudioDspTools.Utility.InfodBV(float_array_input)

	Prints the average sum as decibel whereas 1.0 is 0dB.


	Parameters

	float_array_input (float) – The audio data.



	Returns

	dBV – Average power in dB.



	Return type

	float










	
pyAudioDspTools.Utility.InfodBV16Bit(int_array_input)

	Prints the average sum as decibel whereas 32767 is 0dB.


	Parameters

	int_array_input (int) – The audio data.



	Returns

	dB16 – Average power in dB.



	Return type

	float










	
pyAudioDspTools.Utility.MakeChunks(float32_array_input)

	Converts a long numpy array in multiple small ones for processing


	Parameters

	float_array_input (float) – The array, which you want to slice.



	Returns

	The sliced arrays.



	Return type

	numpy array










	
pyAudioDspTools.Utility.MixSignals(*args)

	Adds several numpy arrays. Used for mixing audio signals


	Parameters

	args (1D numpy-arrays) – Multiple arrays.



	Returns

	A single array.



	Return type

	1D numpy array










	
pyAudioDspTools.Utility.MonoWavToNumpy16BitInt(wav_file_path)

	Imports a .wav file as a numpy array. All values will be scaled to be
between -32768 and 32767.


	Parameters

	wav_file_path (string) – Follows the normal python path rules.



	Returns

	numpy array – The imported array



	Return type

	int16










	
pyAudioDspTools.Utility.MonoWavToNumpyFloat(wav_file_path)

	Imports a .wav file as a numpy array. All values will be scaled to be
between -1.0 and 1.0 for further processing.


	Parameters

	wav_file_path (string) – Follows the normal python path rules.



	Returns

	numpy array – The imported array



	Return type

	float










	
pyAudioDspTools.Utility.NumpyFloatToWav(filename, data)

	Write a numpy array as a WAV file
:param filename: Output wav file
:type filename: string or open file handle
:param rate: The sample rate (in samples/sec).
:type rate: int
:param data: A 1-D or 2-D numpy array of either integer or float data-type.
:type data: ndarray

Notes


	The file can be an open file or a filename.


	Writes a simple uncompressed WAV file.


	The bits-per-sample will be determined by the data-type.


	To write multiple-channels, use a 2-D array of shape
(Nsamples, Nchannels).









	
pyAudioDspTools.Utility.VolumeChange(float_array_input, gain_change_in_db, overflow_protection=True)

	Increases or decreses the volume of a signal in decibel.


	Parameters

	
	float_array_input (float) – The array, which you want to be processed.


	gain_change_in_db (float) – The amount of change in volume in decibel.


	overflow_protection (bool) – If true it will clip every value above 1.0 and below -1.0 to 1.0 and -1.0






	Returns

	The processed array



	Return type

	numpy array









Stores variables like chunk_size, also called buffer size by audio professionals, sampling rate and others.
Has a default setting of 44100 Hz (44.1 kHz) and a chunk size of 512


	param sampling_rate

	Sets the global sampling rate of all classes/devices. Defaults to 44100 hertz, which is an audio standard.



	type sampling_rate

	int



	param chunk_size

	The number of samples in a chunk. Audio professionals might also call this buffer size, as this is the term
used in a number of DAWs such as Ableton, Logic and Pro Tools.



	type chunk_size

	int





Notes


	To set the sampling rate and chunk_size simply overwrite them in your script. Write this in the beginning of your




script: ‘pyAudioDspTools.sampling_rate = 48000’ or ‘pyAudioDspTools.chunk_size = 512’




Indices and tables


	Index


	Module Index


	Search Page








            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pyAudioDspTools	
       

     
       	
       	   
       pyAudioDspTools.config	
       

     
       	
       	   
       pyAudioDspTools.EffectCompressor	
       

     
       	
       	   
       pyAudioDspTools.EffectDelay	
       

     
       	
       	   
       pyAudioDspTools.EffectEQ3Band	
       

     
       	
       	   
       pyAudioDspTools.EffectEQ3BandFFT	
       

     
       	
       	   
       pyAudioDspTools.EffectFFTFilter	
       

     
       	
       	   
       pyAudioDspTools.EffectGate	
       

     
       	
       	   
       pyAudioDspTools.EffectHardDistortion	
       

     
       	
       	   
       pyAudioDspTools.EffectSaturator	
       

     
       	
       	   
       pyAudioDspTools.EffectSoftClipper	
       

     
       	
       	   
       pyAudioDspTools.EffectTremolo	
       

     
       	
       	   
       pyAudioDspTools.Generators	
       

     
       	
       	   
       pyAudioDspTools.Utility	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | I
 | M
 | N
 | P
 | R
 | V
 


A


  	
      	apply() (pyAudioDspTools.EffectCompressor.CreateCompressor method)

      
        	(pyAudioDspTools.EffectDelay.CreateDelay method)


        	(pyAudioDspTools.EffectEQ3BandFFT.CreateEQ3BandFFT method)


        	(pyAudioDspTools.EffectFFTFilter.CreateHighCutFilter method)


        	(pyAudioDspTools.EffectFFTFilter.CreateLowCutFilter method)


        	(pyAudioDspTools.EffectGate.CreateGate method)


        	(pyAudioDspTools.EffectHardDistortion.CreateHardDistortion method)


        	(pyAudioDspTools.EffectSaturator.CreateSaturator method)


        	(pyAudioDspTools.EffectSoftClipper.CreateSoftClipper method)


        	(pyAudioDspTools.EffectTremolo.CreateTremolo method)


      


  

  	
      	applyhighband() (pyAudioDspTools.EffectEQ3Band.CreateEQ3Band method)


      	applylowband() (pyAudioDspTools.EffectEQ3Band.CreateEQ3Band method)


      	applymidband() (pyAudioDspTools.EffectEQ3Band.CreateEQ3Band method)


  





C


  	
      	CombineChunks() (in module pyAudioDspTools.Utility)


      	Convert16BitTodBV() (in module pyAudioDspTools.Utility)


      	ConvertdBVTo16Bit() (in module pyAudioDspTools.Utility)


      	CreateCompressor (class in pyAudioDspTools.EffectCompressor)


      	CreateDelay (class in pyAudioDspTools.EffectDelay)


      	CreateEQ3Band (class in pyAudioDspTools.EffectEQ3Band)


      	CreateEQ3BandFFT (class in pyAudioDspTools.EffectEQ3BandFFT)


      	CreateGate (class in pyAudioDspTools.EffectGate)


  

  	
      	CreateHardDistortion (class in pyAudioDspTools.EffectHardDistortion)


      	CreateHighCutFilter (class in pyAudioDspTools.EffectFFTFilter)


      	CreateLowCutFilter (class in pyAudioDspTools.EffectFFTFilter)


      	CreateSaturator (class in pyAudioDspTools.EffectSaturator)


      	CreateSinewave() (in module pyAudioDspTools.Generators)


      	CreateSoftClipper (class in pyAudioDspTools.EffectSoftClipper)


      	CreateSquarewave() (in module pyAudioDspTools.Generators)


      	CreateTremolo (class in pyAudioDspTools.EffectTremolo)


      	CreateWhitenoise() (in module pyAudioDspTools.Generators)


  





D


  	
      	Dither16BitTo8Bit() (in module pyAudioDspTools.Utility)


  

  	
      	Dither32BitIntTo16BitInt() (in module pyAudioDspTools.Utility)


  





I


  	
      	InfodBV() (in module pyAudioDspTools.Utility)


  

  	
      	InfodBV16Bit() (in module pyAudioDspTools.Utility)


  





M


  	
      	MakeChunks() (in module pyAudioDspTools.Utility)


      	MixSignals() (in module pyAudioDspTools.Utility)


      	
    module

      
        	pyAudioDspTools.config


        	pyAudioDspTools.EffectCompressor


        	pyAudioDspTools.EffectDelay


        	pyAudioDspTools.EffectEQ3Band


        	pyAudioDspTools.EffectEQ3BandFFT


        	pyAudioDspTools.EffectFFTFilter


        	pyAudioDspTools.EffectGate


        	pyAudioDspTools.EffectHardDistortion


        	pyAudioDspTools.EffectSaturator


        	pyAudioDspTools.EffectSoftClipper


        	pyAudioDspTools.EffectTremolo


        	pyAudioDspTools.Generators


        	pyAudioDspTools.Utility


      


  

  	
      	MonoWavToNumpy16BitInt() (in module pyAudioDspTools.Utility)


      	MonoWavToNumpyFloat() (in module pyAudioDspTools.Utility)


  





N


  	
      	NumpyFloatToWav() (in module pyAudioDspTools.Utility)


  





P


  	
      	
    pyAudioDspTools.config

      
        	module


      


      	
    pyAudioDspTools.EffectCompressor

      
        	module


      


      	
    pyAudioDspTools.EffectDelay

      
        	module


      


      	
    pyAudioDspTools.EffectEQ3Band

      
        	module


      


      	
    pyAudioDspTools.EffectEQ3BandFFT

      
        	module


      


      	
    pyAudioDspTools.EffectFFTFilter

      
        	module


      


      	
    pyAudioDspTools.EffectGate

      
        	module


      


  

  	
      	
    pyAudioDspTools.EffectHardDistortion

      
        	module


      


      	
    pyAudioDspTools.EffectSaturator

      
        	module


      


      	
    pyAudioDspTools.EffectSoftClipper

      
        	module


      


      	
    pyAudioDspTools.EffectTremolo

      
        	module


      


      	
    pyAudioDspTools.Generators

      
        	module


      


      	
    pyAudioDspTools.Utility

      
        	module


      


  





R


  	
      	reset() (pyAudioDspTools.EffectTremolo.CreateTremolo method)


  





V


  	
      	VolumeChange() (in module pyAudioDspTools.Utility)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Quickstart
        


      


    
  

_images/Logo.png
pyAudioDsp'I%





_static/SmallLogo.png





_static/file.png





_static/minus.png





_static/plus.png





